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Recent theoretical work has shown that the complete set of polarized elastic light-scattering 
studies should yield information about scatterer structure that has so far hardly been utilized. 
We present here calculations of angular dependences of light-scattering matrix elements for 
spheres near the Rayleigh and Rayleigh-Gans-Debye limits. The significance of single matrix 
elements is documented on examples that show how different matrix elements respond to changes 
in particle parameters. It appears that in the small-particle limit (Ra /). < 0'1) we do not loose 
much information by ignoring "large particle" observables. 

The Lorenz-Mie theory! which predicts sphere scattering exactly for all size spheres 
can be approximated with simple models in two regions, where optical and geo
metrical constants approach a limiting case. One region is the Rayleigh region, where 
the size of the particle is considered to be very small compared to the wavelength 
of the scattered radiation. In this case the incident electric field is essentially constant 
over the entire particle; this approximation permits the small particle to be treated 
as an electric dipole. The obvious requirement that the external field be considered 
homogeneous is for spherical particles 

21tR/J.. ~ 1, (1) 

where R denotes the sphere radius and J.. is wavelength in vacuum. However, a second 
condition is needed for Rayleigh scattering: The size should be small compared with 
the wavelength inside the particle. Thus, an additional condition is 

21tRn/J.. ~ 1, (2) 

where n is the refractive index of the particle. If only condition (1) is fulfilled, the inner 
field is not in phase with the external field and we are in the "resonance region'" 
This situation is typical of small conducting particles and does not interest us here' 

The other region is the Rayleigh-Gans-Debye region, where the particles can be 
large, but the refractive index of the particle and that of the surrounding medium 
are considered to be almost equal. Usually one locates! the Rayleigh-Gans-Debye 
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region where the refractive index measured relative to the surrounding medium, ii, 
is close to 1, 

a = Iii - 11 ~ 1, (3) 

and the phase shift is small, i.e., 

b = 2kRlii - 11 ~ 1 , (4) 

where k = 2rr!),. We will clarify these limiting cases on some examples which show 
the scattering behaviour of particles with optical parameters on the boundary of 
this limit. 

It is very well known that the properties of light scattered from a particle are 
related to those of the incident light through a 4 x 4 matrix known as the Mueller 
scattering matrix1 ,2 (M matrix). Information about the light scattering properties 
of the particle or collection of particles is contained in the matrix. Determination 
of the elements of the matrix, therefore, provides information about the scatterer, 
which can be related to its optical properties and physical structure. The possibility 
of a rapid and accurate measurement of the M matrix elements by modulation 
techniques3 allows the appropriate matrix elements of a theoretical model to be 
compared directly with the corresponding experimental values. As a result, light 
scattering techniques find a wide range of useful applications, which broadens with 
advances in the experimental determination and theoretical understanding of the 
M matrix elements. The large number of independent observables1 ,2 (10 independent 
matrix elements for the case of a random suspension of arbitrarily shaped particles) 
may seem surprising since in the practice of light scattering only one or two polariza
tion ratios at most are usually measured. The traditionally ignored observables may 
- but need not - provide new structural information. 

This paper draws attention to information carried by the individual matrix ele
ments. We discuss the particular form of the M matrix for the Rayleigh particle as 
a special case of the M matrix for an anisotropic dipolar particle. Furthermore, we 
compare the corresponding matrix elements for Rayleigh, Rayleigh-Gans-Debye 
and Lorenz-Mie (LM) particles and shortly comment on the results obtained by an 
analysis of single matrix elements with the standard approach. Understanding 
of the entire matrix of a perfect particle (a sphere in our case) provides a basis for 
gradually improving the matrix when a perfect particle is perturbed into a scatterer 
irregular in shape or composition. 

THEORETICAL 

The basic theory of linear elastic scattering states that the Stokes vector of scattered 
light, S', and the Stokes vector of incident light, S, are related by a 4 x 4 matrix M, 
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i.e., 
(5) 

holds l •2 , where N is the number of scattering particles, k = 2rrj).,). is the wavelength 
of light, r is the distance from the scattering plane to the detector, and ns is the re
fractive index of the surrounding medium. The components of the Stokes vector 
(usually labelled t, Q, U, and V) are defined in terms of electric field amplitudes 
parallel (EI) and perpendicular (Er) to the scattering plane: 

t = <ElE; + ErE;>, Q = <ElE; - ErE~> , 

U = <ElE~ + ErEi>, V = i <ElE~ - ErE;> . 

(6) 

The brackets in Eq. (6) denote time averages and the asterisks denote conjugate com
plex values. The reciprocity theorem4 states that if the scattering is elastic (equa 
incident and scattered frequency) and if the sample is macroscopically isotropic 
the matrix M assumes a special symmetry given by4.5 

(7) 

In a medium fulfilling the assumption of the reciprocity theorem there are ten inde 
pendent observables. The upper case letters are the "large particle" observables 
(also called the retardation observables), the lower case letters are the "all-particle" 
observables (also called the dipole elements), because they do not vanish even in the 
small particle limit of Rayleigh scatterers. We shall briefly summarize the meaning 
of some matrix elements in Eq. (7). Element mll is the total scattering power for 
unpolarized incident light. The well-known Zimm-plot analyses of light scattering 
are based on the angular and concentrational behaviour of mll ; in particular, the 
Rayleigh ratio, R( e), is defined as 

(8) 

where m ll (O) is mil calculated in the forward direction. Element m12 is related to 
the depolarization ratio measured with vertical and horizontal polarizers. The degree 
of linear polarization is defined as 

(9) 

where i J. and i II are the intensities of scattered light at incident linearly polarized 
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light oriented perpendicularly to and in parallel with the scattering plane, respecti
vely. Element M 14 measures the difference in the scattering power for left and right
circularly polarized incident light and is a measure of particle chirality. It is a param
eter important in the circular intensity difference scattering. Elements M 14, M 13 , 

M Z3 ' and M24 must vanish if the particle symmetry is such that it exhibits no handed
ness; accordingly, we often refer to these four elements as to the helicity block. 
Element M 34 has a special importance; it is the only element that is never forbidden 
by symmetry. It may be the only "large-particle" element observable for symmetric 
particles, i.e., for an LM sphere. The explicit form of the M matrix for the LM sphere 
is given by 

(10) 

The only "large-particle" observables in the sense of Eq. (7) are the M34 = -M43 

elements. Element m22 can be used as a measure of the nonspherical shape of 
scatterers2 ; for scattering spheres the value of m22/mll is unity. 

The explicit form of the M matrix for a small anisotropic particle characterized 
by three main components of its polarizability tensor tX I' tXz, tX 3 is given I by 

where 

where 

[

mll mI2 0 0] 
M = m I 2 m22 0 0 , 

o 0 m33 0 
o 0 0 m 44 

mll = 4A + B - (1/2) (2A + 3B) sinz e , 
ml2 = (-1/2) (2A + 3B) sin2 e, 

m22 = (2A + 3B) [1 - (1/2) sinz e] , 

m33 = (2A + 3B) cos e , 
m44 = 5B cos e , 

(II) 

(12) 

A and B are real quantities; the possibility that the tX may be complex is taken into 
account (asterisks denote conjugate complex values), e is the scattering angle. For 
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an isotropic sphere we have !Xl = !X2 = !X3 = !X and it follows from Eqs (12) and (13) 
that 

A = (1/5)!X2 , B = (1/5)!X2 • (14) 

Substitution of Eq. (14) into Eq. (12) thus gives after simple rearrangement for 
the Rayleigh particle 

After simple rearrangement this form of the M matrix (based on the van de Hulst 
expression1) is exactly equivalent to that used by Bohren and Huffman 2 • Complete 
information on the intensity and polarization of scattered light is given by Eq. (5) 
with a substitution for M from Eqs (11) and (15). The explicit relation for the Ray
heigh particle then is 

[
(1/2) (1 + cos 2 e) (1/2) (cos 2 e - 1) 0 0 J 

S' = N(k4 R 6 /r 2) {32 (1/2) (cos2 e - 1) 0/2) (l + cos2 e) 0 0 S, 
o 0 cos e 0 
o 0 0 cos e 

(16) 

where {3 = (n 2 - lY/(n 2 + 2)2. 
The calculations of m ij are based on the program BHMIE (see ref. 2). The Ray

leigh-Gans-Debye approximation is specified by Eqs (3) and (4); the corresponding 
angular dependences are also calculated by means of the MHMIE program. 

RESULTS AND DISCUSSION 

The particle parameters used in our calculations are summarized in Table I. The 
optical parameters of samples 2, 3, and 4 correspond approximately to polystyrene 
latex spheres in cyclohexane. We investigated the angular dependences of the matrix 
elements (Eq. (10)) for a large LM sphere1 ,2 and then forced it into the Rayleigh
-Gans-Debye region (Eqs (3), (4)) by setting the relative refractive index close to 
unity. We denoted by m~j the matrix elements of the Rayleigh particle (Eqs (1) and 
(2)). We followed the normalization used in the BHMIE program2 , i.e., mll and 
m~l were normalized to l'Oin the forward direction, the other elements mij (i,j ¥= 1) 
and m~j (i, j ¥= 1) were normalized by m 11 resp. m~ l' The angular dependences of 
mt (Eq. (16)) are given in Fig. 1 together with the matrix elements mij for spheres 
with growing radius. The matrix elements m~j for Rayleigh particles show no oscilla
tion and are either symmetric or antisymmetric about the scattering angle e = 90° .. 
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TABLE I 

Optical parameters used for calculating the angular dependences of matrix elements mij (program 
BHMIE2). R is the sphere radius, ns and n are the respective refractive indices of particle sur
roundings and of the particle, Rg is the radius of gyration. In the last two columns are the refrac
tive index mismatch (Eq. (3) and the phase shift (Eq. (4), respectively, kR = (2rr/l) R is the 
size parameter 

Sample R,l1m Rg/l ns n kR Iii - 11 2kRlii - II 

1'00 1·224 1'00 1'55 9·9292 0'55 5·73 
2 0'0817 0'142 1-42 1'59 1·1519 0'1197 0'1942 
3 0'04085 0'071 1-42 1'59 0'5760 0'1197 0'0971 
4 0'02042 0'035 1-42 1'59 0'2879 0'1197 0·0485 

1·0 1·0 

0·5 

0·0 

a 
-',0 • • 
0·0 

-',0 

m'2 • 
-0,5 

• 
b 

-',0 
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FIG. 1 

Angular dependences of matrix elements m't) for the Rayleigh particle (Eq. (16) and of elements 
mij for spheres in the Rayleigh-Gans-Debye approximation (Eqs (3), (4» - samples 2, 3 and 4. 
The angular plots of mt2 ~ m12(3) ~ m12(4) and m~3 ~ m33(3) ~ m33(4) are indiscernible. 
Q @ m~3' 0 m~3/mtl' • m33(2)/mll(2); b @ mtz, 0 mtz/mtl> • m12(2)/mll(2); c @ mtl' 
(i) mll (4), 0 ml1(3), • mll(2); d €a M 34(4)/ml1(4), 0 M 34(3)/mll(3), • M 34(2)/mll(2) 
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The relationships for m~ are independent of particle size, shape and optical proper
ties as long as the particles are much smaller than the wavelength of scattered radia
tion. The remaining curves in Fig. 1 are the angular dependences of the matrix 
elements for spheres with radii R increasing from 0·020411m to 0·04085 llm and 
0·081711m. For the smallest sphere (R = 0·020411m) the angular dependence of mij 

deviates only slightly from the purely symmetric m~ curves. The ratios of different 
matrix elements for angles ranging from 00 to 1800 are summarized in Table II 
for samples 2, 3, and 4. It is interesting that the M 34 plots show very distinct dif
ferences between the compared samples. A comparison of M 34 column shows that 
theoretically the M 34 plots carry much more information than the m 11 plots. In 
practice, however, the M 34 element for small particles is not sufficiently large to be 
measured reliably as documented in Fig. 2, which shows the absolute maximum of 
the M 34/ m 11 ratio plotted in the double-logarithmic coordinates against Rg/)" where 
Rg is the radius of gyration of a homogeneous sphere; we take Rg = (3/5)1/2 R. 
Both M 34 and m 11 elements were evaluated at an angle corresponding to the absolute 
maximum of M 34 • The very steep dependence of IM34/mlllm.lC on Rg/), creates an 
observability threshold just where the particle departs from the Rayleigh limit, near 

TABLE II 

Relative angular changes of different matrix elements with increasing sphere size. Comparison 
between samples 2, 3 and 4 from Table I 

e m11 (3/2) m12 (3/2) m33(3/2) M 34(3/2) ml1(4!3) m12 (4/3) m33 (4!3) M 34(4/3) 

0 1·000 1·000 1·000 1-000 
10 1·006 1·023 1·000 0·184 1·002 1·005 1-000 0·041 
20 1·023 1·023 1·000 0·178 1·006 1·005 1·000 0·040 
30 1·053 1·029 0·999 0·172 1·013 1·005 0·999 0·039 
40 1·095 1·024 0·998 0·150 1·023 1·005 0·999 0·039 
50 1-151 1-022 0·996 0·144 1·036 1·005 0·999 0·039 
60 1·221 1·019 0·989 0·130 1·051 1·004 0·998 0·038 
70 1·307 1-015 0·975 0·112 1-068 1-003 0·995 0·038 

80 1-411 1·010 0·937 0·102 1-087 1·002 0·986 0·037 
90 1·531 1-001 0·203 0·090 1·108 1·100 0·240 0·037 

100 1·664 0·991 1·083 0·079 1·129 0·998 1·014 0·036 
110 1·762 0·983 1·032 0·070 1·150 1·997 1·006 0·036 
120 1·929 0·977 1·014 0·063 1·170 0·996 1·002 0·035 
130 2·087 0·972 1-006 0·057 1·187 0·995 1·001 0·035 
140 2·214 0·970 1·002 0·053 1·202 0·995 1·000 0·034 
150 2·322 0·969 1·001 0·050 1·215 0·995 1·000 0·034 
160 2·405 0·968 1-009 0·046 1·224 0·995 1·000 0·035 
170 2·458 0·967 1·000 0·046 1·230 0·994 1·000 0·033 
180 2·476 1-000 1·231 1-000 
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the radius of one-tenth of the wavelength, as discussed below. The solid line represents 
our samples 2, 3 and 4, the broken line represents the recent calculations of McClain 
and Ghoul6 • As seen in Fig. 2, both calculations give the same slope, the shift of 
lines is connected with the fact that different refractive indices were used. We can 
estimate the smallest radius obtainable from Fig. 2 by assuming a specific accuracy 
of IM34/mlllmax. If we take IM34/mldmax = 10- 3 , we will not be able to measure 
M 34 for particles with Rg/A. smaller than about 0·06. Similarly, assuming 1M 34/ml1lmax 
= 10- 2 we have Rg/A. = 0.13. We can use the dissymmetry factor?, D = m ll(45°)/ 
m ll (135°), for size characterization. The D values for samples 2, 3 and 4 are 2'34, 
1·22 and 1'05, respectively. It is very well known that - according to a general rule 
- the backscattering is somewhat less intensive than the forward scattering for small 
kR. With increasing kR this asymmetry becomes more and more pronounced. 
Thus, it can be concluded that from the point of view of small particle scattering 
(Rg/A. < 0'13) the M 34 matrix elements (the single non-zero "large-particle" observ
able for a sphere) do not improve experimental possibilities in comparison with 
the classical approach of dissymmetry measurement at the present state of detection 
technique. On the other hand, with increasing size of the sphere this matrix element 
changes most significantly among all matrix elements. Potential information carried 

FIG. 2 

Dependence of log IM34/nllllmax on log 
(Rg/A). The solid line represents the data 
of McClain and Ghou16 , the broken line 
connects points corresponding to samples 2, 
3 and 4. The slope approaches 5 for the 
plotted size range 

FIG. 3 

Angular dependences of matrix elements 
m t l' m t 2, nl33 and M34 for the Lorenz-Mie 
sphere (sample 1, Table J). Note the signi
ficant increase of M 34!m 11 element in com
parison with Fig. 1. The sign changes are 
a sensitive measure of the optical parameters 
of the sphere 
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in this matrix element has been tested by several authors for particles of intermediate 
diameter (between about a tenth of a wave and a few waves). Examples of angular 
dependences for sample 1 in this size range are given in Fig. 3. The relative magnitude 
of the M 34 element is comparable with other elements. In addition, sensitivity of this 
element to the optical parameters seems to be higher than that of the m12 element 
(cf. the zero-crossing points for m12 and for M 34)' It is noteworthy that the angular 
dependence of the M 34 element is very sensitive not only to particle shape (by model
ling the particle as a collection of discrete subunits differently distributed in space), 
but to the refractive indices of the particle and its surroundingS, and to small struc
tural changes of bioscatterers9 as well. The role of the M 34 element is also important 
when one attempts to characterize irregular particles and their aggregates10 or in 
studies of anisotropic particlesll . 
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